New Morphinane and Hasubanane Alkaloids from Stephania cepharantha

Noriaki Kashiwaba,*^{,†} Shigeo Morooka,[†] Michiko Kimura,[†] Minoru Ono,[†] Jun Toda,[‡] Hideki Suzuki,[‡] and Takehiro Sano[‡]

Research Laboratories, Kaken Shoyaku Co., Ltd., 3-37-10, Shimorenjaku, Mitaka-shi, Tokyo 181, Japan, and Showa College of Pharmaceutical Sciences, 3-3165, Higashi-Tamagawagakuen, Machida-shi, Tokyo 194, Japan

Received November 6, 1995[®]

Six morphinane alkaloids, cephasamine (3), cephakicine (4), tannagine (6), 14-episinomenine (7), FK-3000 (8), and sinoacutine (9), and five hasubanane alkaloids, cephatonine (5), cepharamine (10), aknadinine (11), aknadicine (12), and aknadilactam (13), were isolated from the tuber of *Stephania cepharantha* Hayata (Menispermaceae) cultivated in Japan. Three of these (3–5) were new alkaloids. Structures were spectroscopically determined by comparison of their ¹H and ¹³C NMR data with that of cephamonine (1), cephamuline (2), and other known alkaloids (6–13).

In a previous paper,¹ we have reported the isolation and structural determination of two new morphinane alkaloids, cephamonine (1) and cephamuline (2), from the tuber of *Stephania cepharantha* Hayata (Menispermaceae)² cultivated in Japan. In further investigation of the alkaloidal constituents of this plant, we have isolated two new morphinane alkaloids, cephasamine (3) and cephakicine (4), and one new husabanane alkaloid, cephatonine (5), together with four known morphinanes, tannagine (6),³ 14-episinomenine (7),^{4,5} FK-3000 (8),^{6,7} and sinoacutine (9),^{8,9} and four known hasubananes, cepharamine (10),^{10,11} aknadinine (11),^{12,13} aknadicine (12),¹³ and aknadilactam (13).^{13,14} This paper deals with the isolation and structural determination of 3-5.

Results and Discussion

The alkaloidal fractions were repeatedly subjected to column chromatography on silica gel followed by preparative TLC to afford 11 alkaloids including three new alkaloids (3-5). Cephasamine (3) was obtained as colorless prisms from ether, and the molecular formula was assigned by the HRMS as C₂₀H₂₃NO₅. The IR (1667, 1611 cm⁻¹) and UV (229sh, 272 nm) spectra indicated the presence of an α,β -unsaturated carbonyl moiety which is present in morphinanes (1, 2, 6, 7) and hasubananes (10–13). The structure of 3, including stereochemistry, was clarified by the ¹H and ¹³C NMR analysis. The assignments of signals were confirmed by comparison with reported data¹ of cephamonine (**1**) and cephamuline (2) and with the spectra of known alkaloids (6-13), whose signals were assigned using 1D and 2D NMR techniques (1H-1H COSY, 1H-13C COSY, NOESY, and COLOC).

The ¹H NMR spectrum of **3** showed signals of one *N*-methyl group ($\delta_{\rm H}$ 2.44), three methoxy groups ($\delta_{\rm H}$ 3.54, 3.84, 4.08), and a set of coupled aromatic protons ($\delta_{\rm H}$ 6.60, 6.71) similar to those of **1** and **2**. In addition to these signals, **3** showed a methine proton ($\delta_{\rm H}$ 5.40) signal as a singlet, instead of the signals due to the H-5 methylene protons of **1** and **2**, indicating that a >CHO–moiety is present at C-5.

The gross structure was obtained by COLOC experiments (Figure 1) in which the correlations were observed between the H-5 (δ_H 5.40) signal and the C-4 (δ_C 142.29), C-6 (δ_C 154.08), and C-7 (δ_C 139.40) signals, between the H-14 (δ_H 2.95) signal and the C-8 (δ_C 191.39) signal, and among two methoxy (δ_H 4.08, 3.54) signals and the C-6 and C-7 signals. These results indicated that **3** is a morphinane alkaloid bearing 4,5-epoxy, 6,7-dimethoxy, and 6,7-didehydro-8-oxo moieties.

The relative stereochemistry was determined by NOESY experiments (Figure 2). The cross peaks ob-

[†] Kaken Shoyaku Co., Ltd.

[‡] Showa College of Pharmaceutical Sciences. [®] Abstract published in Advance ACS Abstracts, April 15, 1996.

stract published in Mavanet Med Abstracts, April 16, 1000.

Figure 1. ¹H⁻¹³C long range correlations of **3**.

Figure 2. NOE correlations of 3.

Figure 3. CD spectra and octant diagrams of 1 and 3.

served mutually between the H-5, H-14, and H-15 ($\delta_{\rm H}$ 1.84, 2.01) signals indicated that rings C and D have a *trans*-relationship like **1**. These experiments also indicated that a methoxy group is located at the C-6 position since the methoxy signal ($\delta_{\rm H}$ 4.08) showed the correlation to the H-5 signal.

The absolute stereochemistry of **3** was deduced as follows: the CD spectrum (Figure 3) of **3** showed a negative ($\Delta \epsilon - 7.2$) Cotton effect at 315 nm arising from an $n \rightarrow \pi^*$ transition of an α,β -unsaturated carbonyl group. The enone system of **3** is nonplanar as shown

in the stereostructure (Figure 3) of least energy which was obtained by calculation of Chem 3D Plus¹⁵ with MM2 programs. On the basis of the experimental rule¹⁶ in regard to the Cotton effect of nonplanar α,β -unsaturated ketone offered by Snatzke, the absolute stereochemistry was concluded to be 5*S*,9*S*,14*S* as shown by the octant diagram (Figure 3). This conclusion was supported by the fact that the Cotton effect was opposite to that ($\Delta \epsilon$ +3.3, 309 nm) of **1**, which has an opposite stereochemical relationship in respect to the enone moiety (7,8-dimethoxy and 7,8-didehydro-6-oxo) as shown by the octant diagram (Figure 3). Thus, the structure of cephasamine was elucidated as **3**.

Cephakicine (4) was obtained as an amorphous powder. The IR (1744 cm⁻¹) and UV (285 nm) spectra were very similar to those of FK-3000 (8). The molecular formula was established by the HRMS as $C_{23}H_{29}NO_7$, which has excess CH₂ compared to that of 8. The ¹H and ¹³C NMR spectra were also similar to those of 8, except for the signal (δ_H 2.40, δ_C 42.15) assignable to the *N*-methyl group, indicating that 4 should be the *N*-methyl derivative of 8. In fact, reductive *N*-methylation of 8 with HCHO–NaBH₄ in MeOH¹⁷ gave the *N*-methyl derivative. The product was identical to an authentic sample of 4 by comparison of [α]_D, IR, and ¹H NMR spectra. Thus, cephakicine was determined to be the *N*-methyl derivative of 8.

Cephatonine (5) was isolated as an amorphous powder. The molecular formula, C₂₀H₂₅NO₅, determined by the HRMS was the same as that of aknadinine (11), and the fragmentation patterns in the EIMS were similar to those of **11**. Furthermore, the IR and ¹H and ¹³C NMR spectra indicated the same functional groups as those of **11**, except that two aromatic proton ($\delta_{\rm H}$ 6.56, 6.65) signals were observed as two singlets in the ¹H NMR spectrum. These data suggested that **5** was the regioisomer of **11**. The position of two aromatic protons was established by NOESY experiments, in which one aromatic proton ($\delta_{\rm H}$ 6.56) signal showed a cross peak to the H-10 ($\delta_{\rm H}$ 2.51) signal and the other aromatic proton ($\delta_{\rm H}$ 6.65) signal was correlated to the H-5 ($\delta_{\rm H}$ 3.01) and H-15 ($\delta_{\rm H}$ 2.16) signals. Thus, two aromatic protons are located at the C-1 and C-4 positions. Furthermore, the position of the methoxy group on the aromatic ring was also elucidated by the NOESY experiments, in which the methoxy ($\delta_{\rm H}$ 3.84) signal was correlated to the H-4 ($\delta_{\rm H}$ 6.65) signal, indicating that the methoxy group is located at the C-3 position. Since the optical activity showed the same direction as that of 11, the absolute stereochemistry was concluded to be 13*R* and 14*S*. Thus, the structure of cephatonine was determined to be 5.

Experimental Section

General Experimental Procedures. Melting points were measured on a Yanagimoto hot-stage melting point apparatus without correction. NMR spectra were taken on a JNM- α 500 (JEOL) (500 MHz for ¹H and 125 MHz for ¹³C) spectrometer in CDCl₃ with TMS as an internal standard, and the chemical shifts are given in δ values. IR spectra were recorded on an FT/IR-5000 (JASCO) spectrometer as KBr pellets, and data are given in cm⁻¹. UV spectra were measured on a Ubest-35 (JASCO) spectrometer in MeOH, and data are given as λ_{max} nm (log ϵ). MS were taken on JMS-AX505H or JMS-D300

(JEOL) spectrometers at 30 eV, and EIMS data are given in m/z (rel int). Optical rotations were determined on a DIP-140 (JASCO) spectrometer in CHCl₃. CD spectra were measured on a J-600 (JASCO) spectrometer in MeOH, and data are given as $\Delta \epsilon$ (nm). Column chromatography was performed on Wakogel C-200 (Wako Pure Chemical Industries, Ltd.). Preparative TLC was done on precoated Silica gel 60 F₂₅₄ (0.25 nm thick) plates (Merck).

Plant Material. *S. cepharantha* Hayata was cultivated at Yasato-machi, Ibaraki prefecture, Japan and collected in winter 1987.

Extraction and Isolation. Dry and cut tubers of S. cepharantha (37.4 kg) were extracted twice with hot MeOH. The extract was evaporated in vacuo, and the residue was treated with 5% HCl. The mixture was filtered, and the filtrate was extracted with Et₂O. The aqueous layer was adjusted to pH 7 with NH₄OH and extracted with Et₂O to yield fraction A (270.2 g). Then, the aqueous layer was basified with NH₄OH to pH 10 and extracted with Et₂O to yield fraction B (289.4 g). Fraction A was repeatedly subjected to silica gel column chromatography, using CHCl₃, 2%, 4%, and 8% MeOH-CHCl₃, and MeOH as eluents. The material eluted with 2% MeOH-CHCl₃ was further chromatographed, followed by preparative TLC, to afford cephasamine (3, 34) mg), cephakicine (4, 23 mg), cephatonine (5, 15 mg), 14episinomenine (7, 46 mg), sinoacutine (9, 17 mg), cepharamine (10, 62 mg), aknadinine (11, 61 mg), aknadicine (12, 45 mg), and aknadilactam (13, 32 mg). Fraction B was repeatedly chromatographed on silica gel, using 2%, 4%, 6%, 8%, and 50% MeOH–CHCl₃ as eluents. Further chromatography of the fraction eluted with 2% MeOH-CHCl₃ gave FK-3000 (8, 8.5 g), and the mother liquor of 8 was repeatedly subjected to preparative TLC to afford tannagine (6, 38 mg).

Cephasamine (3): mp 142–144 °C (colorless prisms from ether); $[\alpha]^{28}_{D}$ +105° (c = 0.34); IR 3420, 1667, 1611, 1510, 1450, 1286, 1251; UV 229sh (4.04), 272 (4.02); EIMS 357 (M⁺, 100), 342 (35), 326 (14), 314 (14), 300 (27), 285 (15), 190 (14); HRMS 357.1545 (C₂₀H₂₃NO₅ requires 357.1573); CD -7.2 (315), 12.0 (282), -2.2 (248), 4.9 (237), 2.6 (228), 2.6 (225), -5.3 (217); ¹H NMR 6.60 (d, J = 7.9 Hz, H-1), 6.71 (d, J = 7.9 Hz, H-2), 5.40 (s, H-5), 3.81 (dd, J = 5.8, 3.1 Hz, H-9), 2.52 (dd, J =18.3, 5.8 Hz, H-10), 3.93 (d, J = 18.3 Hz, H-10), 2.95 (d, J = 3.1 Hz, H-14), 1.84 (ddd, J = 12.2, 3.6, 1.6 Hz, H-15), 2.01 (ddd, J = 12.2, 12.2, 4.9 Hz, H-15), 2.24 (ddd, J =12.2, 12.2, 3.6 Hz, H-16), 2.54 (ddd, J = 12.2, 4.9, 1.6 Hz, H-16), 2.44 (s, NCH₃), 3.84 (s, 3-OCH₃), 4.08 (s, 6-OCH₃), 3.54 (s, 7-OCH₃); ¹³C NMR 120.21 (C-1), 114.62 (C-2), 142.77 (C-3), 142.29 (C-4), 86.68 (C-5), 154.08 (C-6), 139.40 (C-7), 191.39 (C-8), 54.97 (C-9), 19.87 (C-10), 127.29 (C-11), 129.59 (C-12), 40.75 (C-13), 49.93 (C-14), 34.39 (C-15), 46.42 (C-16), 42.87 (NCH₃), 56.55 (3-OCH₃), 58.34 (6-OCH₃), 60.02 (7-OCH₃).

Cephakicine (4): amorphous powder; $[\alpha]^{28}_{\rm D} - 161^{\circ}$ (c = 0.22); IR 3450, 1744, 1487, 1247; UV 283 (3.32); EIMS 431 (M⁺, 5), 416 (17), 373 (43), 372 (100), 272 (18), 258 (11), 230 (10); HRMS 431.1919 (C₂₃H₂₉NO₇ requires 431.1942); ¹H NMR 6.62 (d, J = 8.2 Hz, H-1), 6.72 (d, J = 8.2 Hz, H-2), 2.35 (dd, J = 13.3, 12.8 Hz, H-5), 2.86 (dd, J = 12.8, 3.8 Hz, H-5), 5.24 (ddd, J = 13.3, 3.8, 3.8 Hz, H-6), 5.92 (dd, J = 3.8, 0.9 Hz, H-7), 4.15 (d, J = 5.2 Hz, H-9), 2.87 (ddd, J = 17.7, 5.8, 1.0 Hz, H-10), 3.14 (d, J = 17.7 Hz, H-10), 1.87 (ddd, J = 12.5, 3.1, 1.8 Hz, H-15), 2.10 (ddd, J = 12.5, 12.2, 4.6 Hz, H-15), 2.38 (ddd, J = 12.5, 12.2, 3.1 Hz, H-16), 2.55 (ddd, J = 12.5, 4.6, 1.8 Hz, H-16), 2.40 (s, NCH₃), 3.87 (s, 3-OCH₃), 2.01 (s, 6-OCOCH₃), 2.04 (s, 7-OCOCH₃) 3.55 (s, 8-OCH₃); ¹³C NMR 118.38 (C-1), 108.81 (C-2), 145.03 (C-3), 143.40 (C-4), 32.75 (C-5), 68.40 (C-6), 64.37 (C-7), 141.18 (C-8), 52.06 (C-9), 29.92 (C-10), 130.63 (C-11), 128.01 (C-12), 38.12 (C-13), 125.78 (C-14), 35.06 (C-15), 48.05 (C-16), 42.15 (NCH₃), 56.26 (3-OCH₃), 170.29 (6-O*C*OCH₃), 21.03 (6-OCO*C*H₃), 170.64 (7-O*C*OCH₃), 21.04 (7-OCO*C*H₃), 56.98 (8-OCH₃).

Cephatonine (5): amorphous powder; $[\alpha]^{28} - 264^{\circ}$ (*c* = 0.13); IR 3420, 1665, 1601, 1514, 1243; UV 224sh (3.94), 270 (4.56); EIMS 359 (M⁺, 46), 344 (12), 328 (11), 316 (13), 302 (22), 301 (100), 300 (40), 269 (11), 244 (24), 231 (23); HRMS 359.1769 (C₂₀H₂₅NO₅ requires 359.1733); ¹H NMR 6.56 (s, H-1), 6.65 (s, H-4), 2.63 (d, J = 15.9Hz, H-5), 3.01 (d, J = 15.9 Hz, H-5), 1.98 (ddd, J = 13.7, 9.8, 4.9 Hz, H-10), 2.10 (ddd, J = 13.7, 5.5, 4.9 Hz, H-10), 2.51 (ddd, J = 16.5, 5.5, 4.9 Hz, H-11), 2.72 (ddd, J =16.5, 9.8, 4.9 Hz, H-11), 2.03 (ddd, J = 13.1, 9.5, 4.6 Hz, H-15), 2.16 (ddd, J = 13.1, 9.8, 6.1 Hz, H-15), 2.78 (ddd, J = 9.5, 9.2, 6.1 Hz, H-16), 2.82 (ddd, J = 9.8, 9.2)4.6 Hz, H-16), 2.52 (s, NCH₃), 3.84 (s, 3-OCH₃), 3.63 (s, 7-OCH₃), 4.08 (s, 8-OCH₃); ¹³C NMR 113.81 (C-1), 143.60 (C-2), 145.43 (C-3), 109.57 (C-4), 48.56 (C-5), 193.94 (C-6), 137.96 (C-7), 165.38 (C-8), 22.72 (C-9), 25.10 (C-10), 127.79 (C-11), 133.90 (C-12), 48.06 (C-13), 67.24 (C-14), 37.37 (C-15), 51.34 (C-16), 36.21 (NCH₃), 56.07 (3-OCH₃), 60.72 (7-OCH₃), 60.63 (8-OCH₃).

Tannagine (6): amorphous powder; $[\alpha]^{24} + 23^{\circ}$ (c =0.22); IR 3402, 1669, 1605, 1516, 1243; UV 223sh (4.04), 273 (4.01); EIMS 373 (M⁺, 77), 359 (20), 358 (76), 343 (35), 342 (100), 330 (42), 285 (9), 222 (12); HRMS 373.1896 (C₂₁H₂₇NO₅ requires 373.1889); ¹H NMR 6.54 (s, H-1), 6.63 (s, H-4), 2.49 (d, J = 15.9 Hz, H-5), 3.17 (d, J = 15.9 Hz, H-5), 3.52 (dd, J = 5.3, 3.1 Hz, H-9), 2.65 (dd, J = 18.3, 5.8 Hz, H-10), 2.94 (d, J = 18.3 Hz, H-10), 3.06 (d, J = 3.1 Hz, H-14), 1.49 (ddd, J = 12.5, 3.4, 1.8 Hz, H-15), 1.90 (ddd, J = 12.5, 12.2, 4.9 Hz, H-15), 2.15 (ddd, J = 12.2, 11.9, 3.4 Hz, H-16), 2.48 (ddd, J = 11.9, 4.9, 1.8 Hz, H-16), 2.45 (s, NCH₃), 3.82 (s, 2-OCH₃), 3.81 (s, 3-OCH₃), 3.32 (s, 7-OCH₃), 4.01 (s, 8-OCH₃); ¹³C NMR 110.48 (C-1), 147.48 (C-2), 147.36 (C-3), 108.08 (C-4), 49.36 (C-5), 193.43 (C-6), 137.82 (C-7), 162.64 (C-8), 53.23 (C-9), 23.90 (C-10), 129.34 (C-11), 129.25 (C-12), 37.20 (C-13), 48.51 (C-14), 39.20 (C-15), 46.52 (C-16), 42.94 (NCH₃), 56.03 (2-OCH₃), 55.76 (3-OCH₃), 60.69 (7-OCH₃), 60.71 (8-OCH₃).

14-Episinomenine (7): mp 101–103 °C (colorless prisms from acetone); $[\alpha]^{22}_{D}$ –55° (c = 0.36); IR 3400, 1682, 1630, 1611, 1487, 1284; UV 233sh (3.82), 270 (3.79); EIMS 329 (M⁺, 75), 315 (21), 314 (100), 286 (13), 192 (22), 190 (10); HRMS 329.1683 (C₁₉H₂₃NO₄ requires 329.1627); ¹H NMR 6.66 (d, J = 8.6 Hz, H-1), 6.73 (d, J = 8.6 Hz, H-2), 2.67 (d, J = 17.6 Hz, H-5), 4.23 (d, J = 17.6 Hz, H-5), 5.76 (d, J = 2.1 Hz, H-8), 3.13 (dd, J = 6.1, 2.1 Hz, H-9), 2.84 (ddd, J = 18.0, 6.1, 0.9 Hz, H-10), 3.14 (d, J = 18.0 Hz, H-10), 2.97 (br s, H-14), 1.57 (ddd, J = 12.8, 3.1, 1.5 Hz, H-15), 2.19 (ddd, J = 12.8, 12.3, 4.8 Hz, H-15), 2.04 (ddd, J = 12.3, 11.9, 3.1 Hz, H-16), 2.41 (ddd, J = 11.9, 4.8, 1.5 Hz, Hz-16), 2.36 (s, NCH₃), 3.87 (s, 3-OCH₃), 3.71 (s, 7-OCH₃); ¹³C NMR 118.67 (C-1), 109.01 (C-2), 144.70 (C-3), 143.77 (C-4), 48.30 (C-5),

194.74 (C-6), 151.11 (C-7), 119.81 (C-8), 57.99 (C-9), 27.50 (C-10), 130.65 (C-11), 127.04 (C-12), 38.20 (C-13), 42.03 (C-14), 28.18 (C-15), 47.15 (C-16), 43.20 (NCH₃), 56.21 (3-OCH₃), 54.86 (7-OCH₃).

FK-3000 (8): mp 160-161 °C (colorless needles from EtOAc); $[\alpha]^{22}_{D} - 142^{\circ}$ (*c* = 0.70); IR 3412, 1744, 1487, 1251; UV 285 (3.34); EIMS 417 (M⁺, 7), 402 (10), 359 (27), 358 (100), 316 (7), 298 (10), 259 (14), 258 (37), 244 (11), 216 (10); HRMS 417.1772 (C₂₂H₂₇NO₇ requires 417.1784); ¹H NMR 6.62 (d, J = 8.3 Hz, H-1), 6.73 (d, J= 8.3 Hz, H-2), 2.35 (dd, J = 13.4, 13.4 Hz, H-5), 2.83 (dd, J = 13.4, 3.3 Hz, H-5), 5.20 (ddd, J = 13.4, 3.3, 3.3)Hz, H-6), 5.89 (dd, J = 3.3, 1.0 Hz, H-7), 4.38 (br d, J =5.5 Hz, H-9), 2.96 (d, J = 17.4 Hz, H-10), 3.23 (ddd, J =17.4, 6.4, 1.0 Hz, H-10), 1.91 (ddd, J = 12.2, 11.6, 4.8 Hz, H-15), 1.98 (ddd, J = 12.2, 3.5, 1.8 Hz, H-15), 2.69 (ddd, J = 13.9, 11.6, 3.5 Hz, H-16), 2.79 (ddd, J = 13.9)4.8, 1.8 Hz, H-16), 3.87 (s, 3-OCH₃), 2.02 (s, 6-OCOCH₃), 2.04 (s, 7-OCOCH₃) 3.54 (s, 8-OCH₃); ¹³C NMR 118.52 (C-1), 108.87 (C-2), 145.06 (C-3), 143.48 (C-4), 33.29 (C-5), 68.39 (C-6), 65.06 (C-7), 139.81 (C-8), 45.73 (C-9), 36.92 (C-10), 130.84 (C-11), 128.04 (C-12), 38.82 (C-13), 129.12 (C-14), 39.10 (C-15), 40.56 (C-16), 56.27 (3-OCH₃), 170.38 (6-OCOCH₃), 21.05 (6-OCOCH₃), 170.65 (7-OCOCH₃), 21.05 (7-OCOCH₃), 57.58 (8-OCH₃).

Sinoacutine (9): mp 190-192 °C (colorless needles from EtOAc); $[\alpha]^{22}_{D} - 76^{\circ}$ (c = 0.35); IR 3410, 1676, 1647, 1615, 1487, 1286; UV 241 (4.31), 278 (3.82); EIMS 327 (M⁺, 100), 312 (57), 299 (29), 284 (34), 268 (11), 256 (10), 242 (11), 94 (16); HRMS 327.1473 (C19H21NO4 requires 327.1470); ¹H NMR 6.67 (d, J = 8.2 Hz, H-1), 6.75 (d, J= 8.2 Hz, H-2), 7.55 (s, H-5), 6.33 (s, H-8), 3.69 (d, J =5.8 Hz, H-9), 2.98 (ddd, J = 17.7, 5.8, 1.2 Hz, H-10), 3.33 (d, J = 17.7 Hz, H-10), 1.77 (ddd, J = 12.8, 3.1, 1.8Hz, H-15), 2.37 (ddd, J = 12.8, 12.6, 4.6 Hz, H-15), 2.49 (ddd, J = 12.6, 12.5, 3.1 Hz, H-16), 2.61 (ddd, J = 12.5, 3.1 Hz, H-16)4.6, 1.8 Hz, H-16), 2.45 (s, NCH₃), 3.89 (s, 3-OCH₃), 3.75 (s, 6-OCH₃); ¹³C NMR 118.84 (C-1), 109.47 (C-2), 145.35 (C-3), 143.33 (C-4), 120.46 (C-5), 150.99 (C-6), 181.49 (C-7), 122.19 (C-8), 61.05 (C-9), 32.64 (C-10), 129.80 (C-11), 123.98 (C-12), 43.68 (C-13), 161.63 (C-14), 37.76 (C-15), 47.03 (C-16), 41.69 (NCH₃), 56.30 (3-OCH₃), 54.86 (6-OCH₃).

Cepharamine (10): mp 187–188 °C (colorless prisms from ether); $[\alpha]^{22}_{D} - 243^{\circ}$ (*c* = 0.88); IR 3446, 1694, 1630, 1610, 1491, 1280; UV 258 (3.86); EIMS 329 (M⁺, 41), 314 (26), 301 (18), 286 (42), 272 (21), 271 (24), 270 (100), 255 (28), 244 (23), 239 (22), 208 (30), 149 (17); HRMS 329.1633 (C₁₉H₂₃NO₄ requires 329.1627); ¹H NMR 6.59 (d, J = 8.2 Hz, H-1), 6.69 (d, J = 8.2 Hz, H-2), 2.49 (d, J = 16.8 Hz, H-5), 3.73 (d, J = 16.8 Hz, H-5), 5.62 (s, H-8), 1.78 (ddd, J = 14.0, 13.4, 4.7 Hz, H-10), 1.98 (ddd, J = 14.0, 5.0, 2.3 Hz, H-10), 2.58 (ddd, J = 16.2, 4.7, 2.3 Hz, H-11), 2.90 (ddd, J = 16.2, 13.4, 5.0 Hz, H-11), 2.00 (ddd, J = 13.7, 9.8, 3.1 Hz, H-15), 2.59 (ddd, J = 13.7, 9.1, 7.0 Hz, H-15), 2.36 (ddd, J = 9.8, 9.1, 7.0 Hz, H-16), 2.87 (ddd, J = 9.1, 9.1, 3.1 Hz, H-16), 2.41 (s, NCH₃), 3.85 (s, 3-OCH₃), 3.65 (s, 7-OCH₃); 13 C NMR 119.44 (C-1), 108.69 (C-2), 145.08 (C-3), 143.75 (C-4), 44.34 (C-5), 194.12 (C-6), 151.17 (C-7), 114.43 (C-8), 26.73 (C-9), 24.96 (C-10), 128.89 (C-11), 128.11 (C-12), 47.23 (C-13), 64.16 (C-14), 33.46 (C-15), 51.58 (C-16), 33.39 (NCH₃), 56.26 (3-OCH₃), 54.93 (7-OCH₃).

Aknadinine (11): amorphous powder; $[\alpha]^{22}_{D} - 290^{\circ}$ (*c* = 1.1); IR 3320, 1667, 1603, 1491, 1282; UV 232sh

(3.92), 267 (4.02); EIMS 359 (M⁺, 61), 344 (18), 328 (20), 316 (13), 302 (34), 301 (100), 300 (77), 285 (12), 270 (13), 269 (21), 259 (12), 244 (44), 231 (34), 230 (25), 229 (30); HRMS 359.1729 (C₂₀H₂₅NO₅ requires 359.1733); ¹H NMR 6.56 (d, J = 8.2 Hz, H-1), 6.66 (d, J = 8.2 Hz, H-2), 2.64 (d, J = 16.0 Hz, H-5), 3.50 (d, J = 16.0 Hz, H-5), 1.90 (ddd, J = 13.4, 11.3, 4.6 Hz, H-10), 2.15 (ddd, J =13.4, 4.9, 4.9 Hz, H-10), 2.56 (ddd, J = 16.2, 4.9, 4.6 Hz, H-11), 2.79 (ddd, J = 16.2, 11.3, 4.9 Hz, H-11), 2.11 (ddd, J = 14.0, 9.5, 4.0 Hz, H-15), 2.47 (ddd, J = 14.0, J = 14.0)10.1, 6.4 Hz, H-15), 2.67 (ddd, J = 9.7, 9.5, 6.4 Hz, H-16), 2.83 (ddd, J = 10.1, 9.7, 4.0 Hz, H-16), 2.53 (s, NCH₃), 3.83 (s, 3-OCH₃), 3.65 (s, 7-OCH₃), 4.07 (s, 8-OCH₃); ¹³C NMR 119.13 (C-1), 108.64 (C-2), 145.01 (C-3), 143.76 (C-4), 43.28 (C-5), 194.82 (C-6), 138.12 (C-7), 165.16 (C-8), 23.05 (C-9), 25.22 (C-10), 128.77 (C-11), 128.41 (C-12), 47.13 (C-13), 67.81 (C-14), 33.96 (C-15), 51.34 (C-16), 36.36 (NCH₃), 56.22 (3-OCH₃), 60.73 (7-OCH₃), 60.55 (8-OCH₃).

Aknadicine (12): mp 153–155 °C (colorless prisms from MeOH); $[\alpha]^{25}_{D}$ -231° (c = 0.70); IR 3420, 1661, 1607, 1487, 1280; UV 232sh (3.94), 268 (4.11); EIMS 345 $(M^+, 41), 302 (21), 301 (100), 300 (59), 270 (28), 269 (42),$ 259 (11), 238 (10), 237 (31); HRMS 345.1609 (C19H23-NO₅ requires 345.1576); ¹H NMR 6.59 (d, J = 8.2 Hz, H-1), 6.69 (d, J = 8.2 Hz, H-2), 2.50 (d, J = 16.8 Hz, H-5), 3.63 (d, J = 16.8 Hz, H-5), 1.82 (ddd, J = 13.4, 13.1, 5.2 Hz, H-10), 2.14 (ddd, J = 13.4, 4.9, 1.8 Hz, H-10), 2.61 (ddd, J = 17.0, 4.9, 1.8 Hz, H-11), 3.06 (ddd, J = 17.0, 13.1, 5.2 Hz, H-11), 2.17 (m, H-15), 2.64 (m, H-15), 2.84 (m, H-16), 2.86 (m, H-16), 3.85 (s, 3-OCH₃), 3.69 (s, 7-OCH₃), 4.13 (s, 8-OCH₃); ¹³C NMR 119.48 (C-1), 108.82 (C-2), 144.99 (C-3), 143.69 (C-4), 42.86 (C-5), 194.42 (C-6), 136.92 (C-7), 164.96 (C-8), 26.63 (C-9), 24.96 (C-10), 128.23 (C-11), 128.12 (C-12), 45.36 (C-13), 66.97 (C-14), 34.52 (C-15), 42.21 (C-16), 56.22 (3-OCH₃), 60.61 (7-OCH₃), 61.25 (8-OCH₃).

Aknadilactam (13): amorphous powder; $[\alpha]^{28} - 152^{\circ}$ (c = 0.58); IR 3376, 1673, 1613, 1493, 1267; UV 268 (4.05); EIMS 373 (M⁺, 100), 358 (31), 331 (15), 301 (32), 300 (35), 285 (22), 243 (11); HRMS 373.1522 (C₂₀H₂₃-NO₆ requires 373.1523); ¹H NMR 6.57 (d, J = 8.2 Hz, H-1), 6.72 (d, J = 8.2 Hz, H-2), 2.79 (d, J = 16.8 Hz, H-5), 3.48 (d, J = 16.8 Hz, H-5), 2.17 (ddd, J = 14.1, 11.0, 5.4 Hz, H-10), 2.32 (ddd, J = 14.1, 5.1, 4.9 Hz, H-10), 2.64 (ddd, J = 16.8, 11.0, 4.9 Hz, H-11), 2.71 (ddd, J = 16.8, 5.1, 5.1 Hz, H-11), 2.76 (d, J = 17.1 Hz, H-15), 3.04 (d, J = 17.1 Hz, H-15), 2.96 (s, NCH₃), 3.85 (s, 3-OCH₃), 3.69 (s, 7-OCH₃), 4.11 (s, 8-OCH₃); ¹³C NMR 119.36 (C-1), 109.66 (C-2), 145.24 (C-3), 143.90 (C-4), 41.52 (C-5), 192.86 (C-6), 137.15 (C-7), 160.76 (C-8), 25.01 (C-9), 25.06 (C-10), 127.83 (C-11), 123.90 (C-12), 42.70 (C-13), 67.90 (C-14), 40.47 (C-15), 174.42 (C-16), 28.16 (NCH₃), 56.22 (3-OCH₃), 60.64 (7-OCH₃), 60.95 (8-OCH₃).

N-Methylation of 8. A solution of **8** (210 mg) and 35% aqueous HCHO (0.5 mL) in MeOH (5 mL) was stirred for 30 min at 60 °C, and NaBH₄ (100 mg) was added to the solution under ice cooling. After 30 min, the solution was diluted with H₂O and extracted with CH₂Cl₂. The extract was washed with H₂O, dried over Na₂SO₄, and evaporated *in vacuo*. The residue was subjected to preparative TLC [with EtOAc–Et₂NH (9: 1)] to afford **4** (196 mg, 90.3%), which was found to be

identical with an authentic sample by comparison of TLC, HPLC, $[\alpha]_D$, IR, and 1H NMR.

Acknowledgment. The authors thank Mr. T. Shinohara, Racing Chemistry Laboratories, for the MS measurements and useful discussions.

References and Notes

- (1) Kashiwaba, N.; Morooka, S.; Kimura, M.; Murakoshi, Y.; Toda, J.; Sano, T. *Chem. Pharm. Bull.* **1994**, *42*, 2452–2454.
- (2) While the species name "*cepharantha*" for the title plant was provided to the authors of this article by the botanical authority, "*cephalantha*" seems to be more acceptable taxonomically.
- (3) Charles, B.; Guinaudeau, H.; Bruneton, J.; Cabalion, P. *Čan. J. Chem.* **1989**, *67*, 1257–1260.
- (4) Barton, D. H. R.; Kirby, A. J.; Kirby, G. W. J. Chem. Soc. C 1968, 929–936.
- (5) Vecchietti, V.; Casagrande, C.; Ferrari, G. Tetrahedron Lett. 1976, 1631–1634.
- (6) Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Kosemura, S.; Okamura, N.; Ogawa, T.; Ogoshi, M.; Yamakawa, K.; Hamanaka, T. *Jpn. Kokai Tokkyo Koho JP*, 62,289,565; *Chem. Abstr.* **1988**, *109*, 73724*t*.

- (8) Suau, R.; Cuevas, A.; Garcia, A. I.; Rico, R.; Cabezudo, B. Phytochemistry 1991, 30, 3315–3317.
- (9) Hussain, S. F.; Siddiqui, M. T. Planta Med. 1992, 58, 108.
- (10) Tomita, M.; Kozuka, M. Yakugaku Zasshi 1967, 87, 1203–1208.
- (11) Kunitomo, J.; Murakami, Y.; Oshikata, M.; Shingu, T.; Lu, S.-T.; Chen, I.-S.; Akasu, M. Yakugaku Zasshi 1981, 101, 431– 436.
- (12) Wang, X.-K.; Zhao, Y.-R.; Zhao, T.-F.; Lai, S.; Che, C.-T. *Phytochemistry* **1994**, *35*, 263–265.
- (13) Moza, B. K.; Bhaduri, B.; Basu, D. K.; Kunitomo, J.; Okamoto, Y.; Yuge, E.; Nagai, Y.; Ibuka, T. *Tetrahedron* **1970**, *26*, 427– 433.
- (14) Kunitomo, J.; Okamoto, Y.; Yuge, E.; Nagai, Y. *Tetrahedron Lett.* **1969**, 3287–3289.
- (15) Version 3.1.1. Cambridge Scientific Computing, Inc.
- (16) Snatzke, G. Tetrahedron 1965, 21, 413–419.
- (17) Sondengam, B. L.; Hémo, J. H.; Charles, G. Tetrahedron Lett. 1973, 261–263.

NP960080D